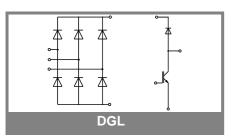


SEMITOP® 3

3-phase bridge rectifier + brake chopper

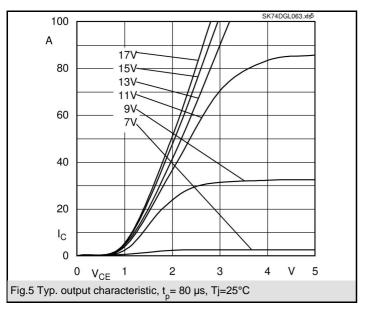
SK 74 DGL 063

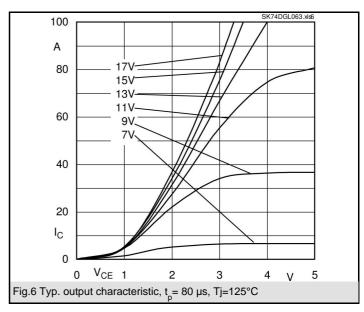

Preliminary Data

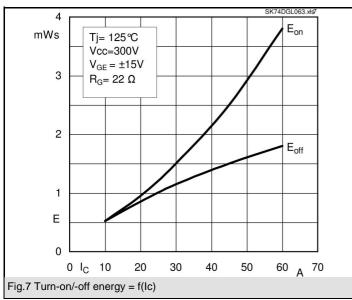
Features

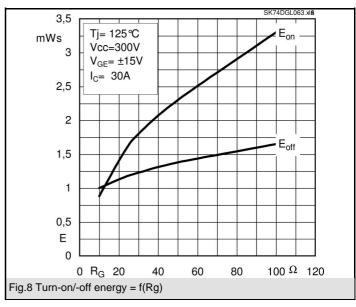
- · Compact design
- · One screw mounting
- Heat transfer and isolation through direct copper bonded alumium oxide ceramic (DCB)
- Ultrafast NPT technology IGBT
- CAL Technology FW

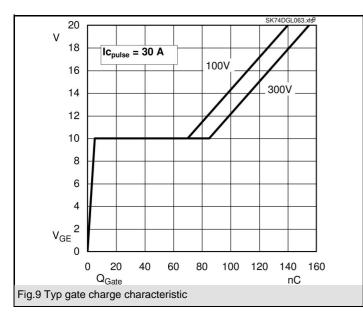
Typical Applications*

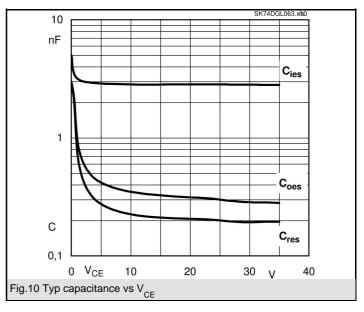

Rectifier

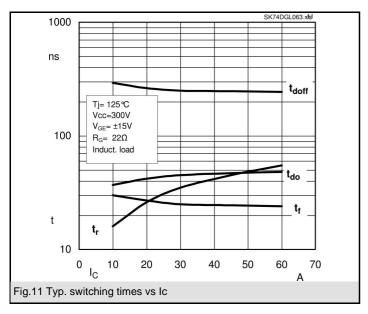


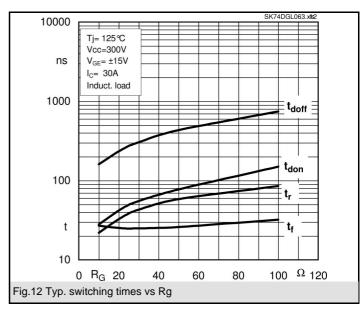

Absolute Maximum Ratings T _s = 25°C, unless otherwise specified								
Symbol	Conditions	Values	Units					
IGBT - Chopper								
V_{CES}		600	V					
I _C	T _s = 25 (80) °C	45 (32)	Α					
I _{CRM}	$I_{CRM} = 2 \times I_{Cnom}, t_p = 1 \text{ ms}$	100	Α					
V_{GES}		±20	V					
T _j		-40 + 150	°C					
Diode - Chopper								
I _F	T _s = 25 (80) °C	36 (24)	Α					
I _{FRM}	$I_{FRM} = 2xI_{Fnom}, t_p = 1 \text{ ms}$	70	Α					
T _j	·	-40 + 150	°C					
Rectifier								
V_{RRM}		800	V					
I _D	T _s = 80 °C	74	Α					
I _{FSM} / I _{TSM}	$t_p = 10 \text{ ms}$, sin 180 °, $T_i = 25 \text{ °C}$	370	Α					
I ² t	t _p = 10 ms , sin 180 ° ,T _i = 25 °C	685	A²s					
T _j	,	-40 + 150	°C					
T _{sol}	Terminals, 10s	260	°C					
T _{stg}		-40 + 125	°C					
V _{isol}	AC, 1 min. / 1s	2500 / 3000	V					

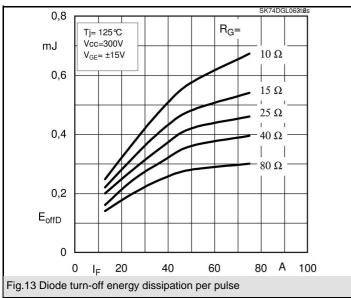

Characteristics		T _s = 25°C, unless otherwise specified						
Symbol	Conditions	min.	typ.	max.	Units			
IGBT - Chopper								
V _{CEsat}	$I_{\rm C} = 30 \text{ A}, T_{\rm j} = () ^{\circ}\text{C}$		1,8 (2)	2,1 (2,3)	V			
$V_{GE(th)}$	$V_{GE} = V_{CE}$, $I_C = 0.5$ mA	3	4	5	V			
V _{CE(TO)}	T _j = 25 °C (125) °C		0,85 (0,9)		V			
r _T	$T_j = 25 ^{\circ}\text{C} (125) ^{\circ}\text{C}$		19 (22)		mΩ			
C _{ies}	$V_{CE} = 25 V_{GE} = 0 V, f = 1 MHz$		2,6		nF _			
Coes	$V_{CE} = V_{GE} = 0 \text{ V, f} = 1 \text{ MHz}$		-		nF			
C _{res}	$V_{CE} = V_{GE} = 0 \text{ V, f} = 1 \text{ MHz}$		-		nF			
$R_{th(j-s)}$	per IGBT			1	K/W			
$t_{d(on)}$	under following conditions		45		ns			
t _r	$V_{CC} = 300 \text{ V}, V_{GE} = \pm 15 \text{ V}$		40		ns			
t _{d(off)}	$I_{\rm C} = 30 \text{ A}, T_{\rm j} = {^{\circ}\rm C}$		250		ns			
t _f	$R_{Gon} = R_{Goff} = 22 \Omega$		30		ns			
E _{on}	inductive load		1,45		mJ			
E _{off}			1,2		mJ			
	Diode - Chopper							
$V_F = V_{EC}$	$I_F = 30 \text{ A}, T_j = () ^{\circ}\text{C}$		1,45 (1,4)	1,7 (1,75)	V			
V _(TO)	$T_{j} = {^{\circ}C} (125) {^{\circ}C}$		(0,85)	(0,9)	V			
r _T	$T_{j} = {^{\circ}C} (125) {^{\circ}C}$		(22)	(16)	mΩ			
R _{th(j-s)}	per diode			1,7	K/W			
I _{RRM}	under following conditions		16		Α			
Q_{rr}	$I_F = 25 \text{ A}, V_R = 300 \text{ V}$		2		μC			
E _{rr}	$V_{GE} = 0 \text{ V}, T_j = ^{\circ}\text{C}$		25		mJ			
	$di_{F/dt} = 500 \text{ A/}\mu\text{s}$							
Diode rectifier								
V_{F}	I _F = 30 A, T _i = () °C		1,25		V			
$V_{(TO)}$	T _i = 150 °C		0,8		V			
r _T	$T_{j} = 150 ^{\circ}\text{C}$		13		mΩ			
$R_{th(j-s)}$	per diode			1,7	K/W			
Temperatur sensor								
R _{ts}	%, T _r = () °C		()		Ω			
Mechanical data								
w			30		g			
M_s	Mounting torque	2,25		2,5	Nm			


SK 74 DGL 063

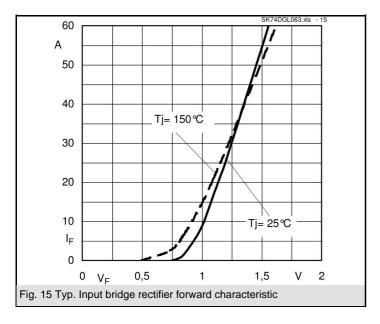


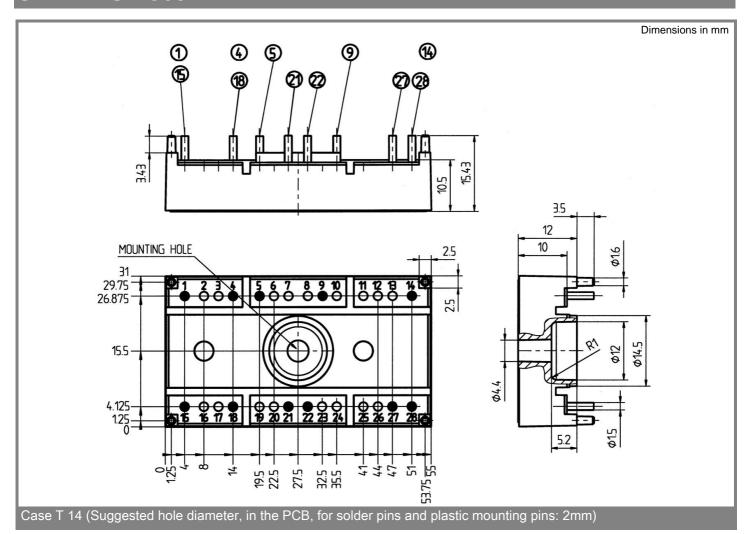


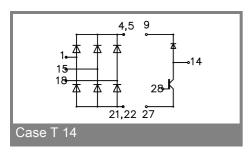







SK 74 DGL 063





This is an electrostatic discharge sensitive device (ESDS), international standard IEC 60747-1, Chapter IX.

* The specifications of our components may not be considered as an assurance of component characteristics. Components have to be tested for the respective application. Adjustments may be necessary. The use of SEMIKRON products in life support appliances and systems is subject to prior specification and written approval by SEMIKRON. We therefore strongly recommend prior consultation of our personal.